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Abstract—The deflection of a light beam passing close to the Sun
and the increment in interplanetary radar echo time are known as
important consequences of the general theory of relativity. In this
investigation, by endowing each celestial body a unique local ether
and by modifying the speed of light in a gravitational potential, a
wave-propagation model is proposed to account for these phenomena
in a classical way without invoking the space-time curvature.
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1. INTRODUCTION

It is known that the deflection of a light beam passing close to the Sun
and the increment in interplanetary radar echo time predicted from
the general theory of relativity have been demonstrated experimentally.
The general relativity invokes the space-time curvature associated with
the length contraction and the time dilation caused by a gravitational
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field [1]. In this investigation, an entirely different interpretation of
these propagation phenomena, is presented.

Recently, we have proposed the local-ether model of wave
propagation by slightly modifying the classical ether notion [2].
According to this model, electromagnetic wave can be viewed as to
propagate via a medium like the ether. However, the ether is not
universal. It is supposed that the region under sufficient influence of
the gravity due to the Earth, the Sun, or another celestial body forms
a local ether which in turn moves with the respective body. Each
individual local ether is finite in extent and may be wholly immersed
in another local ether of larger extent. Thus, the local ethers may
form a multiple-level hierarchy. At a given position, it is the lowest-
level local ether that determines the wave propagation locally. For
an electromagnetic wave propagating within a single local ether, it is
proposed that as in the classical ether notion, the propagation speed
with respect to the associated local ether is just the speed of light
¢, independent of the motion of the source and the receiver. For the
earthbound propagation, the medium is the earth local ether which
as well as earth’s gravitational potential is stationary in a geocentric
inertial frame. While, for the interplanetary propagation, the main
medium is the sun local ether stationary in a heliocentric inertial
frame. Thus, for the earthbound or the interplanetary propagation,
the speed c is referred to a geocentric or a heliocentric inertial frame,
respectively. As in the classical ether notion, the actual propagation
range is the distance from the source at the instant of wave emission
to the receiver at the instant of reception. However, the reference
frame is attached to the associated local ether. Owing to the
movement of the receiver with respect to the local ether during wave
propagation, the interplanetary propagation depends both on earth’s
rotation and on earth’s orbital motion around the Sun. While, the
earthbound propagation still depends on earth’s rotation but is entirely
independent of earth’s orbital motion. By using the endowed flexibility
of the reference frame for wave propagation, this new classical model
can solve the discrepancy in the effect of earth’s orbital motion and
has been adopted to account for a variety of propagation phenomena
consistently [2], including the earthbound GPS (global positioning
system) pseudorange correction, the interplanetary radar echo time,
and the earthbound and the interplanetary Doppler frequency shifts.
Moreover, as examined with the present accuracy, the local-ether model
is still in accord with the Michelson-Morley experiment which is known
to make the classical ether notion obsolete.

In this investigation, we modify the speed of light in the presence of
a gravitational potential and then show that this simple propagation
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model is in accord with the light deflection, the increment in GPS
propagation time, and the increment in interplanetary radar echo
time. Thus, by taking into account the gravitational effect on wave
propagation, the local-ether model can be more complete.

2. GRAVITATIONAL EFFECT ON WAVE
PROPAGATION

It is supposed that the gravity which is associated with the formation
of local ethers may further be associated with the speed of wave
propagation. Specifically, it is postulated that under the gravitational
potential of a celestial body of mass M, the electromagnetic potential
or field in free space having no sources is governed by the wave equation
given as

2 ng &
\Y ‘Il(r,t) - 2‘2—5727\1/(1', t) = 0, (1)
where the gravitational index ng is a function of space proposed as
GM
ng(r) =1+ QW’ (2)

r (= |r|] > Rp) is the radial distance away from the center of the
celestial body of radius Ry, G is the gravitational constant, and ¥
denotes the electric scalar potential ® or a Cartesian component of
the magnetic vector potential A, electric field E, or of magnetic
field B. Thereby, the gravitational potential due to a celestial body
tends to affect the wave propagation [3]. It is seen from the wave
equation that electromagnetic wave propagates at the speed of ¢/n,
with respect to the local-ether frame associated with the celestial
body. Thus, the region under a gravitational potential may be treated
classically as a dielectric medium of which the refractive index is given
by ng. Accordingly, the speed of light passing through this region
decreases from ¢ to ¢/ng, where the speed is referred to a geocentric
or a heliocentric inertial frame for an earthbound or an interplanetary
propagation, respectively.

3. LIGHT DEFLECTION

Based on the proposed simple propagation model associated with the
gravitational index, the deflection of a light beam passing near a
celestial body can be accounted for by the spatial variation of the
index. It is noted that closer to the surface of the body, the index
becomes larger. The deflection of light is somewhat similar to the
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total internal reflection of a short wave from the ionosphere of which
the refractive index is decreasing with increasing altitude. In what
follows, we provide a quantitative analysis of the deflection under the
condition of a slowly-varying index.

For a time-harmonic wave at angular frequency w, the wave
equation (1) becomes the Helmholtz equation as

V2¥(r) + kgn2(r)¥(r) = 0, (3)

where kg = w/c. If the index ny is a slowly-varying function of
space, the wave ¥ can be close to a space harmonic e 7¥T  where
the propagation vector k determines the propagation direction and
the rate of phase variation. Further, the magnitude of the propagation

vector can be given as
k= kong. (4)

Without loss of generality, consider a plane wave of which the phase
on the plane x = zg is ¢o. That is,

U(zo,y,2) = exp(—jdo). : (5)

If the phase ¢o is a constant over the plane, the propagation vector
has no components in this plane (k = £k) and the wave is propagating
in the z direction. Next, consider the phase distribution over a
neighboring plane (z = zo + dz) parallel to the first plane. If the
index is uniform, it is known that the wave over the second plane is
simply given as

U (z0 + dz,y, 2) = exp(—jdo — jkdz). (6)

If the index is slowly varying, it is expected that this phase distribution
holds. Then, by applying Taylor’s series expansion to the index along
a transverse (say, z) direction, the wave can be rewritten as

U(zo + dz,y, 2)
d
= oo, ) exp { ko [ny + G2z~ 20)] e

dn

dzg Zg] dm} exp(—jk.2z), (7)

= ¥(zo,y,2)exp {-—jko [ng -
where k, = (kodz)dny/dz and the index and its derivative are taken
at a suitable point (zo + dz,y,z0) on the second plane. It is of
essence to note that the index variation along a transverse direction
introduces a space harmonic in that direction. This transverse
harmonic exp(—jk,z) in turn will cause the plane wave to deflect by an
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angle of sin~!(|k,|/k) =~ |k,|/k toward the higher index. Since k, = 0
on the first plane, the rate of change of the transverse component of
the propagation vector is then given by

dk, . dn,
il (8)

When generalized to a plane wave propagating in an arbitrary
direction, the preceding equation states that the deflection over a
differential propagation distance dl is equal to dl times the derivative
of the index in a transverse direction divided by the index. It is noted
that this agrees with the transverse component of the vector form of
the differential equation of the light rays derived in geometric optics
using a different approach [4].

Thereafter, consider the deflection of a light beam passing near a
celestial body of radius Ry. Arrange the associated local-ether frame
such that the origin is at the center of the celestial body, the wave
propagates in the z direction (when the deflection is absent) along the
line with y = 0 and 2 = b, parameter b (> Rp) is the vertical distance
from the center of the celestial body to the propagation path, and the
index ng varies transversely in the z direction. Thus, the deflection in
the —z direction over a differential propagation length dz is related to
the derivative of index as

da dng

=8 9

dz dz’ )
where we have made use of the gravitational index n, being quite
close to unity. As the deflection is very small, the propagation path is
mostly along the line. Thus, the total deflection angle « is given by

the integration of the derivative of index over the entire propagation
path as

_ ® Ong(z,z) ,  2GM [> 0 (1
@ = /_Oo Oz dr = c? /_ooaz (r) dz
2GM /°° b
2 J oo (07 1 22)32

dz, (10)

where we have made use of r? = 22422 with z = b. A direct integration
leads to that 1CM

a= g (11)
This result is identical to that derived from the general theory of
relativity [5], although no space-time curvature is invoked here. Note
that the propagation path and the geometry of calculation are referred
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specificality to the associated local-ether frame. Without specifying the
reference frame explicitly, a similar approach of the spatially-varying
index has been treated as a pedagogic aid in [1].

It is seen that the deflection depends on parameter b. The
minimum value of b is Ry, which occurs for a ray grazing the celestial
body. The corresponding maximum deflection is then given as

4GM
Umax = ‘m. (12)
For a ray grazing the Sun, amax = 4.9 x 107* deg. As it is well
known, the deflection of optical wave passing close to the Sun was
first confirmed in as early as 1917, shortly after the introduction of
the general theory of relativity. Moreover, the deflection of microwave
passing near the Sun has also been demonstrated [6].

4. INCREMENT IN GPS PROPAGATION TIME

Another propagation phenomenon associated with the gravitational
index ng is the increment of propagation time for a wave passing near a
celestial body. The increment in propagation time per unit propagation
length is given by (ng — 1)/c. Thereby, the increment in the one-way
propagation time can be given by the integration of (n, — 1)/c along
the propagation path from the source at the instant of emission to the
receiver at the instant of reception in the local-ether frame associated
with the celestial body. Note that as in the classical ether notion, the
reference frame and the reference instants for the transmitter and the
receiver are particularly specified. Otherwise, the propagation path is
undetermined.

Consider the earthbound propagation from a transmitter onboard
a GPS satellite to a receiver on the ground. Arrange the geocentric
inertial frame such that the wave propagates along the z direction.
Thus, the increment in the one-way propagation time due to the
gravitational potential of the Earth is given by the integration over
the entire propagation path as

1 [ 2GM [T dz
A7—9 = Z /_zs (TLg - 1) dr = 3 e \/ma (13)

where —z, is the z coordinate of the transmitter at the instant
of emission, —xz. is that of the receiver at the instant of reception
(zs > e > 0), b (= Vr?2 —z?) is the vertical distance from earth’s
center to the propagation path in the geocentric frame, and M is the
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mass of the Earth. A direct integration leads to that
2GM
= In

c3 re — T

Te — Te

ATy (14)
where 7, (= 1/b? + 22) is the geocentric distance of the transmitter at

the instant of emission and 7. (= /b% + z2) is that of the receiver at
the instant of reception. The increment can be rewritten as

2GM = ro+xzs 2GM . rs+re+ R
= hfl = ln ]
c? Te + Te c3 Te+1e — R

AL (15)

where R = x5 — z is the propagation range in a geocentric frame. The
increment (14) is exactly identical to that given in [7] derived based on
the general relativity, including the reference frame and the reference
instants.

It is seen that the increment A7, depends on parameter b. In
GPS, b < re ~ Ry =~ 6400km and ry ~ 26600km for the half-
synchronous satellites. The largest and the smallest increments occur
when b = Ry and b = 0, respectively. Which in turn correspond to

R = \/r2 — R% and R = r5 — Ry, respectively. Thus, the largest and
the smallest increments are A1, = 60 and 43 ps, respectively. This

one-way increment has been proposed as a subtle GPS pseudorange
correction due to earth’s gravitational effect [7].

5. INCREMENT IN INTERPLANETARY RADAR ECHO
TIME

Finally, we consider the interplanetary propagation time, for which the
associated local-ether frame changes to a heliocentric inertial frame.
Particularly, we examine the increment in the delay time for a radar
echo from a planet, where a microwave is transmitted from an earth-
based antenna, passes near the Sun, reaches and reflected back from
the target planet, passes near the Sun again, and then received by the
earth-based antenna. By following the procedure in deriving (15), the
increment in the round-trip propagation time due to the gravitational
potential of the Sun becomes

Ar, = 25M {m rep et By +1nTE"+’"P+R”}, (16)

c3 TEf+Tp~Rf TEb—}—'I‘p——Rb

where rps and 7gp are the heliocentric distance of the earth-based
transceiver at the instants of emission and reception, respectively, rp
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is the heliocentric distance of the target planet-based reflector at the
instant of reflection, Ry and R, are respectively the forward and the
backward propagation ranges in a heliocentric frame, and M is the
mass of the Sun.

The fractional difference between rgy and rgp and that between
Ry and Ry are of the order of normalized speed vg/c, where vg is
earth’s speed in a heliocentric frame [8]. These differences are small
and can be neglected in calculating the subtle gravitational effect. If
the positions of the transceiver and the reflector are referred to an
appropriate instant (say, the instant of emission), then the increment
in the radar echo time becomes

_4GM | retrp+ Rpp

AT,
& rg+rp— Rpp’

(17)

where rg and rp are the heliocentric distances of the transceiver and
the reflector, respectively, and Rgp is the separation distance from the
transceiver to the reflector, all at the reference instant. Without clearly
specifying the reference instants, the preceding echo-time increment
Aty has been demonstrated by sending microwave to Venus, Mercury,
Mars, and spacecrafts passing near the Sun [9-11].

It is seen that the increment depends on parameter b (> Rp). The
maximum value of the increment A7, occurs at superior conjunction
for which the ray is grazing the celestial body and b = Rp. In
interplanetary radar, radius Ry < rg,rp. Thus, rg +rp =

\/ng + R% + \/:z:%) + R? ~ Rpp + R3(1/2zp + 1/2zp), where zp
and zp are the projections of rg and rp on the propagation path,

respectively. Thereby, the maximum increment in radar echo time can
be approximated as

4GM . 4rgrp

A’Tgmax ~ g In —"Rg— (18)

C

For the earth-Venus radar, this maximum increment is as large as about
230 ps. This result disagrees with that given in [5] by an amount of
4GM/c?, which is 19.5 us. It appears that the various deviations based
on the general relativity given in [7, 9, 5] are not entirely identical.

6. CONCLUSION

By endowing each celestial body a unique local ether and by modifying
the speed of light in a gravitational potential, the new classical model
is used to account for the propagation phenomena known as important
consequences of the general relativity, without invoking the space-time
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curvature. It is found that the deflection of light passing near a celestial
body can be treated in a classical way as the deflection due to spatial
variation of dielectric index. The derived deflection agrees with that
predicted from the general relativity. The index variation leads in
a consistent way to the increments in GPS propagation time and in
interplanetary radar echo time. The calculated increments agree with
those derived based on the general relativity. However, a fundamental
difference is that in an earthbound or an interplanetary propagation,
the propagation path is referred to a geocentric or a heliocentric inertial
frame, respectively. Moreover, the positions of transmitter and receiver
are referred to the instants of wave emission and reception, respectively.
Although they are small, these differences provide a means to test the
proposed wave-propagation model.
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